References#
Alaa Khamis. Smart Mobility: Exploring Foundational Technologies and Wider Impacts. Apress (Springer Nature), 2021. ISBN 9781484271001. URL: https://link.springer.com/book/10.1007/978-1-4842-7101-8.
Paul Bolstad. GIS fundamentals : a first text on geographic information systems. Eider (PressMinnesota), 2016.
Ontario Government. Ontario health region boundaries | frontières des régions sanitaires de l’ontario. URL: https://data.ontario.ca/dataset/ontario-s-health-region-geographic-data.
Geopandas developers. Geopandas documentation. URL: https://geopandas.org/getting_started/introduction.html.
MapTiler Team. Epsg:3857. URL: https://epsg.io/3857.
Transport Canada. Canadian motor vehicle traffic collision statistics: 2018. URL: https://tc.canada.ca/en/road-transportation/motor-vehicle-safety/canadian-motor-vehicle-traffic-collision-statistics-2018.
Toronto Police Service. Traffic collisions - killed or seriously injured (ksi) data. URL: https://data.torontopolice.on.ca/datasets/ksi/explore.
Alaa M. Khamis, Mohamed S. Kamel, and Miguel A. Salichs. Cooperation: concepts and general typology. 2006 IEEE International Conference on Systems, Man and Cybernetics, 2006. doi:10.1109/icsmc.2006.384929.
Eric Bonabeau, Marco Dorigo, and Guy Theraulaz. Swarm intelligence: from natural to artificial systems. Oxford Univ. Press, 1999.
André Hottung, Shunji Tanaka, and Kevin Tierney. Deep learning assisted heuristic tree search for the container pre-marshalling problem. Computers & Operations Research, 2020. doi:10.1016/j.cor.2019.104781.
Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng Wang, Changcheng Li, and Maosong Sun. Graph neural networks: a review of methods and applications. AI Open, 1:57–81, 2020. doi:10.1016/j.aiopen.2021.01.001.
William L. Hamilton, Rex Ying, and Jure Leskovec. Representation learning on graphs: methods and applications. CoRR, 2017. URL: http://arxiv.org/abs/1709.05584, arXiv:1709.05584.
F. Scarselli, M. Gori, Ah Chung Tsoi, M. Hagenbuchner, and G. Monfardini. The graph neural network model. IEEE Transactions on Neural Networks, 20(1):61–80, 2009. doi:10.1109/tnn.2008.2005605.
Chaitanya K. Joshi, Thomas Laurent, and Xavier Bresson. An efficient graph convolutional network technique for the travelling salesman problem. CoRR, 2019. URL: http://arxiv.org/abs/1906.01227, arXiv:1906.01227.
Colin R. Reeves. Modern Heuristic Techniques for Combinatorial Problems. McGraw-Hill, 1995.
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly learning to align and translate. 2016. arXiv:1409.0473.
Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer networks. 2017. arXiv:1506.03134.
Richard S. Sutton, Francis Bach, and Andrew G. Barto. Reinforcement Learning: An Introduction. MIT Press Ltd, 2018.
Ahmad Taher Azar, Anis Koubaa, Nada Ali Mohamed, Habiba A. Ibrahim, Zahra Fathy Ibrahim, Muhammad Kazim, Adel Ammar, Bilel Benjdira, Alaa M. Khamis, Ibrahim A. Hameed, and Gabriella Casalino. Drone deep reinforcement learning: a review. Electronics, 2021. URL: https://www.mdpi.com/2079-9292/10/9/999, doi:10.3390/electronics10090999.
Sahil Manchanda, Akash Mittal, Anuj Dhawan, Sourav Medya, Sayan Ranu, and Ambuj Singh. Learning heuristics over large graphs via deep reinforcement learning. 2020. arXiv:1903.03332.
Irwan Bello, Hieu Pham, Quoc V. Le, Mohammad Norouzi, and Samy Bengio. Neural combinatorial optimization with reinforcement learning. 2017. arXiv:1611.09940.
Paulo R. de O. da Costa, Jason Rhuggenaath, Yingqian Zhang, and Alp Akcay. Learning 2-opt heuristics for the traveling salesman problem via deep reinforcement learning. 2020. arXiv:2004.01608.
Mohammadreza Nazari, Afshin Oroojlooy, Lawrence V. Snyder, and Martin Takáč. Reinforcement learning for solving the vehicle routing problem. 2018. arXiv:1802.04240.
Arthur Delarue, Ross Anderson, and Christian Tjandraatmadja. Reinforcement learning with combinatorial actions: an application to vehicle routing. 2020. arXiv:2010.12001.
Abubakr O. Al-Abbasi, Arnob Ghosh, and Vaneet Aggarwal. Deeppool: distributed model-free algorithm for ride-sharing using deep reinforcement learning. IEEE Transactions on Intelligent Transportation Systems, 20(12):4714–4727, 2019. doi:10.1109/tits.2019.2931830.
Takuma Oda and Carlee Joe-Wong. Movi: a model-free approach to dynamic fleet management. 2018. arXiv:1804.04758.
Jiayu Chen, Abhishek K. Umrawal, Tian Lan, and Vaneet Aggarwal. Deepfreight: a model-free deep-reinforcement-learning-based algorithm for multi-transfer freight delivery. 2021. arXiv:2103.03450.